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CALCULATION OF THE EFFECTIVENESS OF GRAVITATIONAL COAGULATION 
OF DROPS WITH ALLOWANCE FOR INTERNAL CIRCULATION* 

A.Z. ZINCHENKO 

The relative trajectories of two liquid spherical particles of different radii mov- 

ing in a viscous medium under the action of gravitational and Archimedean forces 
are considered in the domain of the quasi-stationary Stokes equation applicability. 

The effective capture cross section is determined using exact methods for calculat- 

ing hydrodynamic forces. 

Published results of calculations of effective coagulation of drops in emulsionswereobtained 

using the solid spheres model /1,2/. Since in the Stokes flow convergence of solid particles 
under the action of finite forces in a finite time interval is impossible, additional forces 

of nonhydrodynamic interaction (electric or molecular) , peculiar to contacting spheres were 
introduced for explaining coagulation. However such forces and even their order of magnitude 

are seldom known. It is shown in the present paper that allowance for internal circulation ex- 
plains the possibility of gravitational coagulation without the introduction of additional in- 

teraction forces. 

The radius of effective capture cross section is numerically calculated. The exact solu- 
tion /3/ and the asymptotics /4/ are used for determining hydrodynamic forces in the case of 

axial symmetry and of small gap, and the above asymptotics are made precise. A numerical 
algorithm is developed for calculating the drag coefficient of particles moving the direction 

normal to their line of centers. This method is compared with the exact solution /5/. 
Estimates are given of the possibile effect of particle deformability and of molecular forces. 

1. Statement of the problem. Consider the motion of two fluid spheres of radii a, 

and a2 (a,< a,)in a viscous medium subjected to gravitation and Archimedean forces. The part- 
icles have the same viscosity PY density P , and move in a medium of viscosity pc, anddensity 

PC . It is assumed that the quasi-stationary Stokes equations apply inside drops and in the 

outside medium. The tangential motion of drop surfaces is assumed not stabilized by surface- 

active substances, and their surface tension to be fairly high. Hence,asin/3--5/,weneglect 

the deviation of particle form from spherical, as the boundary condition take the absence of 

flow through the drop-medium interfaces. The velocities and tangential stresses are assumed 

continuous. Initially the particles are far away from each other and move at steady velocit- 

ies VF,VF,while V,".Z> 0, i.e. the spheres begin to con- 

verge (Fig-l). The problem is to determine the impact 

& 

for which particle coagulation is possible. 
The density of Particles is assumed equal to, or 

~~~~:Et'~f the medium. Hence it is reasonable to con- 

sider, when using Stokes equations, only the inertia-free 

equations of particles motion 

Fi 4 $nai3(p- pJg=O (1.1) 

where F., are hydrodynamic forces. 

In the case of slow motion of two solid spheres of 

Fig.1 similar material /6/ it is necessary to supplement Eqs. 

(1.1) by the condition of zero moments of hydrodynamic 

forces relative to particle centers (the condition of free rotation which independently of (1.1) 

makes it possible to express angular velocities of particles in terms of translational ones). 

To speak of liquid spheres rotation has no meaning, since the complicated internal motion is 

uniquely defined by the instantaneous velocities V,, V, of the particles goemetric centers, and 

the absence of moments of hydrodynamic forces automatically follows from the boundary condi- 
tions and Stokes equations /5/. 
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According to /3,5/ 

where V; is the vector component of velocity V, along the line of centers,V,Iis the projec- 
tion of vector V, on a plane normal to the line of centers. Coefficients A,i, Ti, depend on 
a, k h (EUl is the gap between spheres, and k=a, / a2, h = pl pL,)and are considered in greater 
detail in Sects.2 and 3. 

The projection of relations (1.1) on the line of centers and on the plane normal to that 
line, with allowance for (1.2), enables us to eliminate from the obtained equalities the com- 
ponents of velocity V, , and express the equations of relative motion in the form 

A (1) al / dt = --x cos B, I IT (1)1-l dp I dt = x sin B (1.3) 

‘\ = &lb + L~12 , T= 
Tlz - k”T, 2.?lP-Pp,Ig 

Ta - k=Aaz TnT,s i- TnTzl 
( x= 

9Pe 

where the first two formulas are similar to equations in /6/ofrelativemotionofsolidspheres. 
Eliminating time from (1.3) and taking into account the meaning of the aiming parameter d, 
(Fig-l), we obtain equations of relative trajectories of the form 

(1.4) 

Convergence of integral in (1.4) is implied by the asymptotic formulas /5,7/ for Ti,, Ai* 
according to which A(Z) T(I) = 1 + O(Ui /I) as 1-t 00. 

Calculations show that A, T> 0, always (see Sects.2 and 3), hence dF/dl> 0. Moreover, 
as s+O function A has a singularity of order not higher than e-'/s (Sect.2), and function T 
remains finite (Sect.3), therefore F.(a, + a,) is finite. It follows from this and (1.4) that 
when lnd,< F(a, $ a,) , any relative trajectory arriving from infinity reaches the sphere 
1 = a, + a2 (i.e. there is coagulation) and, as implied by Eqs.(l.3), the time of motion taken 
from any point of the relative trajectory to reach the sphere 1 = a, + %is finite. When 
ind,> F(ar + U,)the relative trajectory does not reach the sphere 1= a, + a2 but moves into 
infinity and is symmetric relative to the plane fi = n /2. The critical value of the aiming 
parameter d,* is, thus, defined by the equality 

(1.5) 

In the case of solid spheres A has a sigularity of the order of 8-l as e-0 /a/, hence 
contact of spheres cannot occur within a finite time without the introduction of additional 
interaction forces that are singular as E-0. 

When h is large, the domain of very small e provides a substantial contribution to the 
integral in (1.5) which becomes divergent as h= m . Moreover, when e is very small, it may 
prove essential to take into account additional effects, such as the Van-der-Waals forces,etc. 
Because of this, the most interesting is the determination of integrals (1.5) in the case of 
fairly small h. 

The methods of calculating coefficients Ait and Ti, used in the determinationofintegrals 
(1.5) are presented below. These methods relate to the case of drops of generally different 
viscosities PI, PZ . They can be also of interest for a more general determination of coagula- 
tion effectiveness with allowance for additional nonhydrodynamic forces. 

2. Calculation of coefficients h+j. The exact solution of the axisymmetric problem 
constructed in bispherical coordinates in /3/ is used for determining coefficients Aij . Ac- 
cording to /3/ 
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The same formula with the substitutionof si for 
C, a,hivji, A were defined in /3/. 

6; is valid for A,, - A,, . Parameters 
We would point out the misprints in formulas in /3/ have in 

the denominator C instead of Calcula- 
tion formulas for &I! A 

ca~ and the expression for 6, is of the wrong sign. 

22 are obtained by interchanging the position of spheres, bearing in 
mind the validity of the reciprocity relation /J/ 

A,, - k-l&, = A,, 
As shown in /6,%/, the convergence of series defined in bispherical coordinates worsens 

as a-+ 0 and can be indefinitely slow. Because of this the use of series for calculatingco- 
efficients Aij with small &is ineffective /3/, and asymptotic formulas are mainly used for 
such calculations. In the case of small E coefficients A,,,A 
values A:,, A& for touching spheres with reasonable accuracy. 

12 were replaced by their limit 

A,; and their numerical values appeared in /9/. 
The method of calculatingAl,', 

For Au the following asymptoticswere used: 

(2.1) 

In a number of cases the first two terms of (2.11, obtained in /4/ did not ensure suffic- 
ient accuracy, and the next following term was determined. The internal expansion of the 
stream function obtained in /4/ is valid in the region of small gap between spheres. The con- 
tribution of that region to the coefficient A 11 was also determined there, and a method con- 
structing external expansion valid for the remaining region flow between spheres was roughly 

outlined there. The contribution of external expansion to coefficient Allis determined as in 
the case of interaction between a solid sphere and a solid plane /8/. As the result, we have 

co = t3 -I- hlhz - ‘1’ - ‘2’) {In [2 (1 + k)] - I} + 

9(1$-k) (2.2) 

$,, = (1 + 2s) eZkJ + (2ks - 1) eezS 
$I = (1 + 2s + 2.9) ezb + (1--2ks)e-” 
qz = (1 + 2s) eZk8 + (1 - 2ks + 2k2sa) e-** 
I+~ = (1 + 2s + 29) ezks - (I-2ks + 2kV) eev 

‘pO = sh2 [(I + k) s], ‘pl = ‘12 {sh [2 (1 + k) ~1 - 2 (1 + k) ~1 
(p3 = sh2 [(I + k) sl - (1 + k)Z s2 

A comparison of approximate values of A,,determined by formula (2.1) withits exact value 
for k = 0.5,hI = U.5,hz 4 1 and various a shows that the relative error does not exceed 3.5% 

when .a<&1 and 0.5% when e< 0.01. 

Remark. Formula (2.1) is not uniformly useful when I,, a, - co. Whenh,h,>j,&elarough 

first approximation of the asymptotics of h,,is of the form /lo/ 

&I = 8-l (I+ W* f (PI. ~4, pi = hi )/zqrg (2.3) 

where f(pl, pp) is expressed in terms of the logarithmic derivative of the gamma function. When 

p~.Pn+o, formula (2.3) is consistent with (2.1), and when PI.P~-L~, with the asymptotics 

of solid spheres /%/. 

Owing to the fairly slow decrease of the integrand in (1.5) as l-too, it proved advant- 

ageous to use in calculations of further asymptotic expansions for coefficients Ai, /J/. 

3. Calculation of coefficients Tij. An exact solution of the problem of slow mo- 

tion of two liquid spheres whose instantaneous velocities are normal to their line of centers 

was constructed in bispherical coordinates in /5/. Coefficients Ti, are also represented by 

infinite series, but the terms of such series cannot be explicitly obtained, and have to be 

defined by solutions W,, of the system of difference equations 

,i, T,kwn+t = ~PS,,~ + M,=v n > 1 

T,,k=O (n+k<l), w,,+O (n-tw), 

(3.1) 

where T,,k are some fourth order matrices, w,, S,,' are four-dimensional vectors, and 6* = 0 or 
St = 1. 

To obtain analytic expressions for the 8% elements of matrix Tnh and vectors S,', although 
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theoretically possible using the method developed in /5/, is extremely difficult in practice. 
A method of numerical calculation of T,k and Sn' is also indicated there. Application of the 
matrix run-through to system (3.1) enables us to determine l'il theoretically with any desired 
accuracy as the limits of recurrent sequencies /5/. However that method of calculating Tij is 
complicated by the complexity of determination of Tnk and S,,]. In the range of small b a 
simpler way of calculating Ti, based on the method of reflections proved to be effective and 
reasonably accurate. Unlike in /7/ and other publications on the hydrodynamic interaction of 
two spheres, in which the method of reflections was used for obtaining approximate analytic 
formulas applicable in cases of large distances between spheres, here it is considered to be 
a computational procedure. 

The general recurrent formulas of the method of reflections appear in /7/, they are, how- 
ever, complicated and unsuitable for computational purposes, owing to the unfortunate choice 
in that paper two spherical coordinate systems with polar axes normal to the line of centers. 
Simpler recurrent formulas are obtained below. They make possible the effective calculation 
of a considerably greater number of reflections than in /7/. 

We normalize all distances with respect to distance 2 between the sphere centers. It is 
sufficient to consider the case in which a sphere of radius al(at = ai / 1) travels at the in- 
stantaneous unit velocity i, normal to the line of centers, while the second sphere isatrest. 
In conformity with the general scheme of the reflection method /7,11/, we seek a velocity 
field definition in the region between the spheres of the form 

” = x (Y!*- + v? Zk) 
k=l 

(3.2) 

Every yi.j field satisfies Stokes equations, is regular everywhere outside the sphere of 
radius a, , id vanishes at infinity. 

We determine fields vi*j in the usual sequence 

i jtl vy - v_’ 
_ vi+l,j+l i+l,j+z 

+ -+V_ +v$j+2,... (3.3) 

where the initial field V:” is equal -i,, and vyl'j (j > 1)denotes the expansion of field v!" in 
the neighborhood of the sphere of radius ci+l (indices i,i + 1 are reduced by module 2). 

For the velocity field (3.2) to be a splution pf the problem considered here it is neces- 
sary and sufficient that transition from v'j to vf~jtl is determined by boundary conditions 
that are satisfied.+ each step on the surf',,, of only one sphere. 

lo. Field v>~+ vyjtl has a zero normal component on the sphere of radius or. 

Fig.2 

2O. A Stokes flow of fluid of viscosity p1 whose velocit- 
ies and the tangential stress at the boundary are the same as 
in field V>’ -f- Vt,‘+’ exists inside the sphere of radius af 

Unlike in /7,/, the two systems of spherical coordinates 
introduced by us(rl. 61, Cpr), (rz9 &cp,) are as shown in Fig.2. The 
angle 'Pi corresponds to positive rotation about the Zi axis, 
and 'pi = 0 to the half-plane defined by vector i, andtheline 
of centers. Using Lamb's general solution /ll/ of Stokes equa- 
tions, we represent the unknown fields in the form 

m 

i,j v, = U rot trixt;j) + vQ$j + Cn + 3, ‘i”vPk’ ncipjLj - 
2 (n + 1) (2n +3) - (n + 1) Pi3) J (3.4) n-1 

m 
vbj= 

C[ 
rot (r*x!$+1,) + w$,l, - 

(fi - 2) ‘i”vPt!&+*) 
Zn(2n - 1) 

+ 

n=1 
tn + I) r.pLj 

I (n+l) 1 n(Zn-1) 

In conformity with the general structure of the exact solution in /5/ the velocity com- 
ponents u, and vs are proportional to coscp, and component veto sincp, hence it is sufficient 
to consider spherical harmonics of the special form 

p>&+,) = ~A:&+I) cos ‘pi, @y;+l) = t&&+~) cos ‘pi (3.5) 

$&+n = i&~+l, sin rpi, 5 = r$“+*)Pnl (cos Oi) 
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where P,' is the associated Legendre function. 
The transition from v>jto vi,'+' is similar to that in /7/, with respective formulas of 

the form 

(3.6) 

To represent the field ~2' in the neighborhood of the sphere of radius ai+l in form v5J+' 
we begin by transforming the spherical harmonics. According to /ll/ the following equality 
applies: 

p,* (cos 0,) - (n.Lrn)! 

rm+l = lx / r:+lP, (cos Cl,,,) 
fl!rn! 

1 714 

Differentiating (3.7) with respect to oi we obtain 

l+,?elations (3.8) enable us to show that the unknown formulas of transition from 
v+ ' are of the form 

A'+'*j=mzl &'nAf&+l) n 

(3.7) 

(3.8) 

v"' to 

(3.9) 

The fields v\",j, ~2' defined by formulas (3.4) satisfy the equations /ll/ 

m 
A,l+l, j _ 
+ 2 vP;l,j, 

n=* 

Since in the neighborhood of sphere a,+1 by definition v:+'*'Ev_'~$ hence expanding each 
harmonic pi1 ,m+,) using (3.5) and (3.8) and summating the results , we obtain the first of rela- 

tions (3.9). 
For the determination of X2" we consider the identity /11/ 

On the other hand, from the second of formulas (3.4) we have 

where i, is the unit vector of axis %, and partial derivations are effected in coordinates 

T~+~, ei+l, %+I . Hammics P$,,+~), x$,+,, are defined in these coordinates using (3.5) and (3.8). 
It is not difficult to calculate 

Taking into account (3.10)- (3.12) we obtain the second of relations (3.9). 
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For the determination of 0, i*l,j we use the identity /ll/ 

(3.13) 

On the other hand, from the second of formulas (3.4) we have 

(3.14) vbj.ri+l = 2 ,(22_,) +i+l[(m-2~ri+l~- 
rn=l 

cm+ I) &j 4. Qq (1 rf+J J?.k&] + 2 (ri+I da;1 _ “:‘,I ) -blltl) (m+l) + Cm $ ‘1 ‘i+IP_(m+l) m=, 
Defining harmonics PL\~+~), ,%?cfn+l;, ‘@(,,+I) in coordinates ri+l~ %+lr 'Pi+1 ana using the recurrent 

relations for cosf3 Pni(cosB), we can represent the expression (3.14) in the form 

with some coefficients E,,F,. The expression in (3.13) can be represented in the same form. 
Comparing coefficients &,in both expressions, we obtain the third of relations (3.9). 

The initial condition v:o = -_i, implies that 

A~O=C;O=rJ @>I), &JJ=-I, RkO=O (n>2) (3.15) 

Formulas (3.3), (3.6), (3.91, and (3.15) uniquely define the calculatiov sequence. 
In conformity with data in /ll/ the hydrodynamic forces F, =-4npL,v (ri3p&), where $2 is 

the respective harmonic in Lamb's representation of the resultant velocity field (3.2) in the 
neighborhood of the sphere of radius ai. Taking into account (3.21, (3.41, (3.5), and (l.l), 
we obtain z0 a. 

Tll =& c A:p-l, T,,=-&EC?? 

s=, SEl 

If we restrict the investigation to the few first reflections, the above recurrent form- 
ulas or formulas in /7/, we obtain for coefficients T,j approximate analytic Eormulas in the 
form of polynomials of a,, a*, which are asymptotically correct as a,, a,-t 0. Such forn.das 
were derived in /7/ and corrected in /5/, where it was shown that these formulas may lead to 
considerable errors when e is small. Because of this, the indicated analytical approach was 
extended to the case of arbitrary numbers of reflections, ana realized numerically. Fixing 
the ratio k = at ia,,we represent the coefficients T,,, T,, in the form of Taylor series 

(3.16) 

For the determination of coefficients all,,, %I,,, (n< %) it is sufficient to perform 2n, 
reflections (taking each transition from V, to v_ as a reflection), since further reflections 
do not contribute to the finite sums (3.16). For the same reason it is sufficient to take 
n-S no + (1 -i) 12, m,< no - n + (3 - i)/2 in the conversion formulas (3.9). The quantities 

_4Rjj, .4$+1, etc. were assumed to be polynomials of y of power not higher than 2n,, and trans- 
formations were effected on coefficients of these polynomials; in all transformations terms 
Ys with s> 2n, were re jetted. We stress that the above numerical algorithmprovidesastrict 

method for calculating coefficient of Taylor series independent of no.' The operationalmemory 
volume of the available computer imposed the constraint n, < 115. 

The coefficients of Taylor series for T,, +- T,,ma T,, - T,, can be obtained by exchang- 
ing the places of spheres. The numerically calculated data tabulated below show the converg- 
ence of the asymptotic series (3.16) to the exact values of Tij. Values of function T with 
k = 0.25, h = 10, E = 0.08 ana various n, were calculated using approximate values ofTijdefined 
by formulas (3.16). The exact value of Tcalculated by the method of /5/ for n, = 00 are: 

n, = 10 30 GO ii5 
T = 0.2604 0.2523 0.2508 0.25053 0.2;51 

Calculations have shown that series (3.16) are convergent even when y = l(which conforms 
with data of /5/, according to which coefficients T,J. remain finite when the spheres are in 
contact), but this convergence can be fairly slow. Calculations enable us to assume that for 
fixed k,h(h< oo)and n-t 00 parameters ai,,% approach zero somewhat more rapidly than n-2 but 
this estimate is not uniform with respect to h as h-t 00. To find the upper bound of the con- 
vergence rate we considered the limit case of freely rotating solid spheres h = 00. It was 
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shown in /5/ that in this case 

TiJ (a) = Tij (0) i_ 0 (1 In E i-l), E-+-O (3.17) 

Matching the asymptotics of eij,,, with formula (3.17) when n+ pi) enables us to assume 
that when a = 00 

aij, II = 0 [(n ln2n)-'I, n--Pm (3.18) 

from which follows (3.17). In any case, when h= 00 and a =i 0 series (3.16) converge extrem- 
ely slowly. 

Table 1 

e=0.0005 

B I L=O I 3 I 10 I 30 

0.15 

9.35 

0.75 

814 268 
814 267 
579 329 
779 329 
405 194 
405 194 

178 I45 
169 123 
252 221 
247 '06 
159 145 
158 141 

e=o.o15 

L=O I :, / IO I 3” 

815 
815 
7x2 
782 
407 
407 

"71 182 $49 
270 176 137 
333 257 227 
333 255 221 
196 163 149 
l!iG it?2 148 

Table 1 gives an idea of the accuracy of the method of reflections when % = 47. It shows 
for each set of k,h,E a column of quantities 7'" X 103, TX i03 with T* and T denoting the approx- 
imate and exact values, respectively and (T*> T). The table shows the satisfactory accuracy 
of the proposed method up to the contact of spheres in the case of small h and n, = 4i: its 
accuracy is considerably higher when the spheres are clearly separated. The method is also 
reasonably effective, since with n, = 47 the calculation of all coefficients nij ,,(n<+) foreach 
pair of values of k,A required approximately two minutes of computer time. &en the coeffic- 
ients of Taylor series are known, formulas (3.16) provide a simple dependence of Tijon t, while 
the method in /7/ necessitates separate computations for each relative position of spheres. 

Since series (3.16) converge to exact values of Tij , the proposed method should be con- 
sidered as theoretically exact. It should be, however, pointed out that in the case of large 
h and small E it is extremely difficult to obtain by it reliable values of T,j . This is so 

because in the case of large h coefficients a,j,n initially approach zero very slowly (due to 
the indicated above nonuniform behavior of these coefficients relative to 1, as n-rm),hence a 
comparatively small increase of nu does not markedly improve the accuracy. For example, for 
k =- 0.15, b = 80, %I= g4 the proposed method yields 1" = 0.187 when e = 0.0005 , and T* = 0.143 when 
PC 0.915, which improves only little the value of T* appearing in Table 1 for n, = 47. Simultan 
eously the necessary computer memory volume and the computation time of coefficients %j,n 
sharply increases as sis increased. In the proposed here algorithm the required memory 
volume increases in proportion to ?t ,,2and the computation time in proportion to noa1 reaching 
35 min for each pair of values of k,A when %=94. Because of this the method of /Sf, insen- 
sitive to computation accuracy , is the only one reliable scheme for computing Tir in the case 
of large h and small g 

Remark. In the general recurrent formulas /7/ it is necessary to use as P?X? P_(?I+,) I etc. 
sphericalharmonicsof the general form, hence the constants that define these harmonics depend 
ononemore additional index. Moreover the formulas transform in /7/ (much more complex than 
(3.Y)involve double summation. A direct application of formulas /7/ in the computation of co- 
efficients a,j,, would result in the necessary memory volume of computer and computation time 
becoming proportional to rzo3 and n(,", respectively, making that method less efficient that the 
one proposed here. 

4. Results of computation of coagulation effectiveness. Values of S X IO3 com- 
puted for various k and h are given in Table 2. Since h.< 10 was used in computations, the 
method expounded in Sect.3 for computing T with no = 47 ensured the required accuracy of com- 
putation of S in the majority of variants. The remaining variants were corrected using the 
method of /5/. 

It is interesting to evaluate the effect of the region of small& on s. If it is 
conditionally assumed that coagulation occurs when E reaches some value sO, then the critical 
parameter d,* is determined by (1.4) with E = a,(l-!- i;-' i- sO)andB =n 12. values of S(EJX 10’ 

(where S (Ed) = d,' (Ed)/ (a, i- Qz!) with+= 1@-', IoF3 appear in Table 3. In the case of solid 

spheres coefficients Tfj were computed using the method of /5/ by passing to limit withh+ M. 
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0.15 317 242 202 157 103 
0.25 378 294 247 195 131 
0.35 416 327 217 221 152 
0.5 450 357 306 247 173 
0.75 474 380 327 267 191 
0.9 478 384 332 271 195 

- 

- 

Table 2 Table 3 

2 5 

- 
10 k I I=0 I 0.5 I , 

- 
I I I 

2 
ill 
129 
145 
148 

Let us consider the axisymmetric convergence (B = 0) on the assumption that the condition 
peViT /0<i (U is the surface tension) which ensures the smallness of deformation for ~21, 
we determine for which e the deformation becomes substantial. As shown in /4,10/ regardless 
of h size when eel, the areas of the sphere surface sections, where considerable lubrication 
pressure which determine the singularity of A,,, are of the order of &a+', hence in the region 
of the small gap pressure p - (~a)-~. ~,A,,dZ i dt. Taking into account that A,,& A and using for 
dlldt its expression in (1.3), we find that deformation can only be substantial when 

El( ai21 P - pe I gi (T (4.1) 

For example, for ai- 30 m, (p- peI - 0.2 g/cm3, and 0 
4.10-6. 

-0.05 N/m the extimate yields Fe< 
But condition (4.1) does not take into account any allowance for additional nonhydro- 

dynamic forces. Using the conventional definition of molecular forces 
A 

Fz 6 (1 + !%)a,$ (F< I), A = const 

we find these forces comparable with gravitational forces when 
e<(24ai41p--pPe /g/A)+ (k, 1 - k - 1) 

For A - IO-20 J, I p - pe I -0.2 g/a3, and n’ ,- 10 + 30 pm the estimate yields ~6 IO-'+ io-". 

The author thanks A.M. Golovin for his interest in this work, and the Reviewer for his 
remarks. 
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